Introdução à Bioquímica/Constituintes estruturais dos sistemas vivos/Aminoácidos e proteínas/Aminoácidos: diferenças entre revisões

Conteúdo apagado Conteúdo adicionado
Vista (discussão | contribs)
New page: {{navegação|Índice|Aminoácidos e proteínas|[[Bioquímica/Constituintes e...
(Sem diferenças)

Revisão das 15h07min de 22 de março de 2008



Aminoácidos

 
Estrutura geral de um aminoácido na sua forma zwitteriónica.

Os aminoácidos são moléculas que contêm simultaneamente grupos funcionais amina e ácido carboxílico. Em Bioquímica, este termo é usado como termo curto e geral para referir os aminoácidos alfa, ou seja, aqueles em que as funções amino e carboxilato estão ligadas a um carbono alifático, denominado carbono-alfa (carbono-α). Pelo menos um átomo de hidrogénio está ligado a este carbono. A esfera de coordenação do carbono-α é completada com a presença de uma cadeia lateral, diferente para diferentes aminoácidos. Os aminoácidos α (cerca de vinte) são constituintes de todas as proteínas e péptidos.

Em soluções aquosas de pH neutro, os aminoácidos podem existir em duas formas. Uma pequena fracção encontrar-se-á numa forma electricamente neutra, ou seja, com o grupo amina desprotonado (-NH2) e o grupo carboxilo protonado (-COOH). A maioria estará, no entanto, numa forma ionizada, em que o grupo amina se encontra protonado (-NH3+) e o ácido carboxílico desprotonado a carboxilato (-COO-), denominando-se esta forma de zwitteriónica (do alemão zwitter, que significa "híbrido"). Um zwitterião é uma molécula globalmente neutra em termos de carga eléctrica mas possuindo cargas locais devido à presença de grupos ionizados.

Os aminoácidos podem ligar-se entre si com uma ligação amida, que em Bioquímica é especificamente designada, neste caso, de ligação peptídica. A ligação ocorre entre o átomo de carbono do grupo carboxilato e o azoto do grupo amina; no processo, é libertada uma molécula de água, seno a ligação final entre o carbono de um grupo carbonilo e o azoto de uma amina secundária. Como consequência, uma cadeia peptídica, ou seja, formada por diversos aminoácidos ligados desta forma, terá um grupo amina numa extremidade (denominada N-terminal) e um grupo carboxilato na extremidade oposta (denominada C-terminal).

A ligação peptídica tem uma geometria planar porque existe ressonância entre o grupo carbonilo e o azoto da amina, fazendo com que a ligação C-N tenha um carácter parcial de ligação dupla (é possível desenhar uma estrutura de ressonância entre o átomo de carbono e o de azoto, tendo uma carga negativa formal sobre o oxigénio e uma positiva sobre o azoto). Esta característica impede que haja rotação em torno da ligação C-N, que se mantém numa conformação trans. Seis átomos encontram-se então no mesmo plano geométrico: o carbono-α de um aminoácido, os átomos do grupo carbonilo da ligação peptídica, os átomos da amina secundária dessa mesma ligação e o carbono-α do segundo aminoácido.

Simbologia e nomenclatura

Na nomenclatura dos aminoácidos, a numeração dos carbonos da cadeia principal é iniciada a partir do carbono do grupo carboxilato.

Nome vulgar Símbolo (3 letras) Símbolo (1 letra) Nome sistemático
Glicina ou Glicocola Gly G Ácido 2-aminoacético ou ácido 2-amino-etanóico
Alanina Ala A Ácido 2-aminopropiónico ou ácido 2-amino-propanóico
Leucina Leu L Ácido 2-aminoisocapróico ou ácido 2-amino-4-metil-pentanóico
Valina Val V Ácido 2-aminovalérico ou ácido 2-amino-3-metil-butanóico
Isoleucina Ile I Ácido 2-amino-3-metil-n-valérico ou ácido 2-amino-3-metil-pentanóico
Prolina Pro P Ácido pirrolidino-2-carboxílico
Fenilalanina Phe F Ácido 2-amino-3-fenil-propiônico ou ácido 2-amino-3-fenil-propanóico
Serina Ser S Ácido 2-amino-3-hidroxi-propiónico ou ácido 2-amino-3-hidroxi-propanóico
Treonina Thr T Ácido 2-amino-3-hidroxi-n-butírico
Cisteína Cys C Ácido 2-bis-(2-amino-propiónico)-3-dissulfeto ou ácido 3-tiol-2-amino-propanóico
Tirosina Tyr Y Ácido 2-amino-3-(p-hidroxifenil)propiónico ou paraidroxifenilalanina
Asparagina Asn N Ácido 2-aminossuccionâmico
Glutamina Gln Q Ácido 2-aminoglutarâmico
Aspartato ou ácido aspártico Asp D Ácido 2-aminossuccínico ou ácido 2-amino-butanodióico
Glutamato ou ácido glutâmico Glu E Ácido 2-aminoglutárico
Arginina Arg R Ácido 2-amino-4-guanidina-n-valérico
Lisina Lys K Ácido 2,6-diaminocapróico ou ácido 2,6-diaminoexanóico
Histidina His H Ácido 2-amino-3-imidazolpropiónico
Triptofano Trp W Ácido 2-amino-3-indolpropiónico
Metionina Met M Ácido 2-amino-3-metiltio-n-butírico

Ponto isoeléctrico

O ponto isoeléctrico (pI) de uma molécula é o pH ao qual essa molécula é electricamente neutra. Este conceito é aplicado particularmente a aminoácidos e proteínas. O ponto isoeléctrico não é o pH em que todas os grupos básicos estão desprotonados e os ácidos protonados, mas antes o pH em que o número de cargas positivas e negativas da molécula se cancelam a zero.

O pI corresponde à média dos valores de pKa da molécula:

pI=(pK1+pK2+...+pKn)/n

No caso de aminoácidos isolados com cadeias laterais ionizáveis, o pI do aminoácido será a média dos pKa dos grupos amino e carboxilato ligados ao carbono-α e ainda do pKa da cadeia lateral. As proteínas têm normalmente cadeiasionizáveis, e a diferente proporção de diferentes aminoácidos em cada tipo de proteína confere-lhes diferentes valores de pI.

O cálculo teórico de pI torna-se mais difícil quanto maior for a proteína, já que o pI das cadeias laterais de aminoácidos podem variar ligeiramente dentro do ambiente proteico. É no entanto possível fazer a determinação experimental do pI através de electroforese em gel de poliacrilamida. A proteína cujo pI se pretende determinar é aplicada num gel ao longo do qual existe variação de pH; ao aplicar-se uma diferença de potencial entre as duas extremidades do gel, a proteína migra através deste até encontrar uma zona de pH igual à do seu pI. Neste ponto, a sua migração pára, pois a carga da proteína é neutra a esse pH e não responderá mais à aplicação de um potencial eléctrico. Esse valor de pH será então o pI da proteína.

Isomeria

Todos os aminoácidos obtidos pela hidrólise de proteínas em condições suficientemente suaves apresentam atividade óptica, à excepção da glicina. Como os aminoácidos apresentam quatro grupos diferentes ligados ao carbono central, os aminoácidos apresentam quiralidade, sendo o carbono-α um centro quiral.

O centro quiral permite a existência de estereoisómeros, devido aos diferentes arranjos espaciais possíveis, apresentando os aminoácidos uma actividade óptica. Mais especificamente, existem diferentes enantiómeros, ou seja, formas de aminoácidos que são a imagem do espelho uma de outra. Os enantiómeros de aminoácidos são usualmente classificados como D ou L, sendo essa classificação referente à semelhança com a estrutura do D-gliceraldeído e do L-gliceraldeído, respectivamente. Somente os L-aminoácidos são constituintes das proteínas.

Síntese

Todos os aminoácidos são derivados de intermediários da glicólise, do ciclo dos ácidos tricarboxílicos ou das via das pentoses-fosfato. O azoto entra nessas vias através do glutamato. Há uma grande variação no nível de complexidade das vias, sendo que alguns aminoácidos estão a apenas alguns passos enzimáticos dos seus precursores e em outros as vias são complexas, como no caso dos aminoácidos aromáticos.

As vias biossintéticas de aminoácidos são agrupadas de acordo com a família dos precursores de um deles. As principais famílias são:

  1. A do α-cetoglutarato, que origina o glutamato, a glutamina, a prolina e a arginina.
  2. A do 3-fosfoglicerato, de onde são derivados a serina, a glicina e a cisteína.
  3. A do oxaloacetato, que dá origem ao aspartato, que vai originar a asparagina, a metionina, a treonina e a lisina.
  4. A do piruvato, que dá origem a alanina, a valina, a leucina e a isoleucina.