Módulo:TableTools
Este módulo é usado em mais de Predefinição:Fmtn páginas. (Ver Wikipedia:Predefinições em alto risco) Para evitar sobrecargas desnecessárias ao servidor e outros transtornos, quaisquer mudanças devem ser previamente testadas, seja na predefinição de testes ou em Módulo:TableTools/Testes (ou ainda em sua página de testes). Por favor, sempre considere expor eventuais mudanças na página de discussão, antes de implementá-las. |
Este módulo e os submódulos associados suportam outros módulos Lua com tabelas.
E não devem ser chamadas diretamente com #invoke.
Carregando o módulo
editarPara usar as funções incluídas, deve primeiro carregar o módulo.
local TableTools = require('Módulo:TableTools')
isPositiveInteger
editarTableTools.isPositiveInteger(value)
Devolve true
se value
é um número positivo, e false
if not. Apesar de não operar nas tabelas, é incluido pois determina se uma chave de uma tabela no array é parte da tabela.
isNan
editarTableTools.isNan(value)
Devolve true
se value
é o valor NaN, e false
if not. Apesar de não operar nas tabelas, é incluido pois determina se pode ser uma chave válida da tabela. (Lua gera um erro se o valor NaN é usado para uma chave de uma tabela.)
shallowClone
editarTableTools.shallowClone(t)
Devolve um clone de uma tabela. O valor obtido é uma nova tabela, mas as subtabelas e funções são partilhadas. São respeitados métodos meta, mas a tabela obtida não tem em si metatabela. Se deseja criar uma nova tabela sem subtabelas partilhadas mas com metatabelas transferidas, pode em também usar mw.clone.
removeDuplicates
editarTableTools.removeDuplicates(t)
Remove valores duplicados de um array. Esta função é só feita com arrays modelos: chaves que não sejam números positivos são ignorados, assim as are all values after the first nil
value. (For arrays containing nil
values, you can use compressSparseArray first.) The function tries to preserve the order of the array: the earliest non-unique value is kept, and all subsequent duplicate values are removed. For example, for the table {5, 4, 4, 3, 4, 2, 2, 1}
removeDuplicates will return {5, 4, 3, 2, 1}
numKeys
editarTableTools.numKeys(t)
affixNums
editarTableTools.affixNums(t, prefix, suffix)
numData
editarTableTools.numData(t, compress)
compressSparseArray
editarTableTools.compressSparseArray(t)
sparseIpairs
editarTableTools.sparseIpairs(t)
for i, v in TableTools.sparseIpairs(t) do
-- code block
end
size
editarTableTools.size(t)
Outra documentação:
--[[
------------------------------------------------------------------------------------
-- TableTools --
-- --
-- This module includes a number of functions for dealing with Lua tables. --
-- It is a meta-module, meant to be called from other Lua modules, and should --
-- not be called directly from #invoke. --
------------------------------------------------------------------------------------
--]]
local libraryUtil = require('libraryUtil')
local p = {}
-- Define often-used variables and functions.
local floor = math.floor
local infinity = math.huge
local checkType = libraryUtil.checkType
local checkTypeMulti = libraryUtil.checkTypeMulti
--[[
------------------------------------------------------------------------------------
-- isPositiveInteger
--
-- This function returns true if the given value is a positive integer, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a given table key is in the array part or the
-- hash part of a table.
------------------------------------------------------------------------------------
--]]
function p.isPositiveInteger(v)
if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then
return true
else
return false
end
end
--[[
------------------------------------------------------------------------------------
-- isNan
--
-- This function returns true if the given number is a NaN value, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a value can be a valid table key. Lua will
-- generate an error if a NaN is used as a table key.
------------------------------------------------------------------------------------
--]]
function p.isNan(v)
if type(v) == 'number' and tostring(v) == '-nan' then
return true
else
return false
end
end
--[[
------------------------------------------------------------------------------------
-- shallowClone
--
-- This returns a clone of a table. The value returned is a new table, but all
-- subtables and functions are shared. Metamethods are respected, but the returned
-- table will have no metatable of its own.
------------------------------------------------------------------------------------
--]]
function p.shallowClone(t)
local ret = {}
for k, v in pairs(t) do
ret[k] = v
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- removeDuplicates
--
-- This removes duplicate values from an array. Non-positive-integer keys are
-- ignored. The earliest value is kept, and all subsequent duplicate values are
-- removed, but otherwise the array order is unchanged.
------------------------------------------------------------------------------------
--]]
function p.removeDuplicates(t)
checkType('removeDuplicates', 1, t, 'table')
local isNan = p.isNan
local ret, exists = {}, {}
for i, v in ipairs(t) do
if isNan(v) then
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
ret[#ret + 1] = v
else
if not exists[v] then
ret[#ret + 1] = v
exists[v] = true
end
end
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- numKeys
--
-- This takes a table and returns an array containing the numbers of any numerical
-- keys that have non-nil values, sorted in numerical order.
------------------------------------------------------------------------------------
--]]
function p.numKeys(t)
checkType('numKeys', 1, t, 'table')
local isPositiveInteger = p.isPositiveInteger
local nums = {}
for k, v in pairs(t) do
if isPositiveInteger(k) then
nums[#nums + 1] = k
end
end
table.sort(nums)
return nums
end
--[[
------------------------------------------------------------------------------------
-- affixNums
--
-- This takes a table and returns an array containing the numbers of keys with the
-- specified prefix and suffix. For example, for the table
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will
-- return {1, 3, 6}.
------------------------------------------------------------------------------------
--]]
function p.affixNums(t, prefix, suffix)
checkType('affixNums', 1, t, 'table')
checkType('affixNums', 2, prefix, 'string', true)
checkType('affixNums', 3, suffix, 'string', true)
local function cleanPattern(s)
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
return s
end
prefix = prefix or ''
suffix = suffix or ''
prefix = cleanPattern(prefix)
suffix = cleanPattern(suffix)
local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$'
local nums = {}
for k, v in pairs(t) do
if type(k) == 'string' then
local num = mw.ustring.match(k, pattern)
if num then
nums[#nums + 1] = tonumber(num)
end
end
end
table.sort(nums)
return nums
end
--[[
------------------------------------------------------------------------------------
-- numData
--
-- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
-- of subtables in the format
-- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
-- Keys that don't end with an integer are stored in a subtable named "other".
-- The compress option compresses the table so that it can be iterated over with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.numData(t, compress)
checkType('numData', 1, t, 'table')
checkType('numData', 2, compress, 'boolean', true)
local ret = {}
for k, v in pairs(t) do
local prefix, num = mw.ustring.match(tostring(k), '^([^0-9]*)([1-9][0-9]*)$')
if num then
num = tonumber(num)
local subtable = ret[num] or {}
if prefix == '' then
-- Positional parameters match the blank string; put them at the start of the subtable instead.
prefix = 1
end
subtable[prefix] = v
ret[num] = subtable
else
local subtable = ret.other or {}
subtable[k] = v
ret.other = subtable
end
end
if compress then
local other = ret.other
ret = p.compressSparseArray(ret)
ret.other = other
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- compressSparseArray
--
-- This takes an array with one or more nil values, and removes the nil values
-- while preserving the order, so that the array can be safely traversed with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.compressSparseArray(t)
checkType('compressSparseArray', 1, t, 'table')
local ret = {}
local nums = p.numKeys(t)
for _, num in ipairs(nums) do
ret[#ret + 1] = t[num]
end
return ret
end
--[[
------------------------------------------------------------------------------------
-- sparseIpairs
--
-- This is an iterator for sparse arrays. It can be used like ipairs, but can
-- handle nil values.
------------------------------------------------------------------------------------
--]]
function p.sparseIpairs(t)
checkType('sparseIpairs', 1, t, 'table')
local nums = p.numKeys(t)
local i = 0
local lim = #nums
return function ()
i = i + 1
if i <= lim then
local key = nums[i]
return key, t[key]
else
return nil, nil
end
end
end
--[[
------------------------------------------------------------------------------------
-- size
--
-- This returns the size of a key/value pair table. It will also work on arrays,
-- but for arrays it is more efficient to use the # operator.
------------------------------------------------------------------------------------
--]]
function p.size(t)
checkType('size', 1, t, 'table')
local i = 0
for k in pairs(t) do
i = i + 1
end
return i
end
local function defaultKeySort(item1, item2)
-- "number" < "string", so numbers will be sorted before strings.
local type1, type2 = type(item1), type(item2)
if type1 ~= type2 then
return type1 < type2
else -- This will fail with table, boolean, function.
return item1 < item2
end
end
--[[
Returns a list of the keys in a table, sorted using either a default
comparison function or a custom keySort function.
]]
function p.keysToList(t, keySort, checked)
if not checked then
checkType('keysToList', 1, t, 'table')
checkTypeMulti('keysToList', 2, keySort, { 'function', 'boolean', 'nil' })
end
local list = {}
local index = 1
for key, value in pairs(t) do
list[index] = key
index = index + 1
end
if keySort ~= false then
keySort = type(keySort) == 'function' and keySort or defaultKeySort
table.sort(list, keySort)
end
return list
end
--[[
Iterates through a table, with the keys sorted using the keysToList function.
If there are only numerical keys, sparseIpairs is probably more efficient.
]]
function p.sortedPairs(t, keySort)
checkType('sortedPairs', 1, t, 'table')
checkType('sortedPairs', 2, keySort, 'function', true)
local list = p.keysToList(t, keySort, true)
local i = 0
return function()
i = i + 1
local key = list[i]
if key ~= nil then
return key, t[key]
else
return nil, nil
end
end
end
--[[
Returns true if all keys in the table are consecutive integers starting at 1.
--]]
function p.isArray(t)
checkType("isArray", 1, t, "table")
local i = 0
for k, v in pairs(t) do
i = i + 1
if t[i] == nil then
return false
end
end
return true
end
-- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 }
function p.invert(array)
checkType("invert", 1, array, "table")
local map = {}
for i, v in ipairs(array) do
map[v] = i
end
return map
end
--[[
{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true }
--]]
function p.listToSet(t)
checkType("listToSet", 1, t, "table")
local set = {}
for _, item in ipairs(t) do
set[item] = true
end
return set
end
--[[
Recursive deep copy function.
Preserves identities of subtables.
]]
local function _deepCopy(orig, includeMetatable, already_seen)
-- Stores copies of tables indexed by the original table.
already_seen = already_seen or {}
local copy = already_seen[orig]
if copy ~= nil then
return copy
end
if type(orig) == 'table' then
copy = {}
for orig_key, orig_value in pairs(orig) do
copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen)
end
already_seen[orig] = copy
if includeMetatable then
local mt = getmetatable(orig)
if mt ~= nil then
local mt_copy = deepcopy(mt, includeMetatable, already_seen)
setmetatable(copy, mt_copy)
already_seen[mt] = mt_copy
end
end
else -- number, string, boolean, etc
copy = orig
end
return copy
end
function p.deepCopy(orig, noMetatable, already_seen)
checkType("deepCopy", 3, already_seen, "table", true)
return _deepCopy(orig, not noMetatable, already_seen)
end
--[[
Concatenates all values in the table that are indexed by a number, in order.
sparseConcat{ a, nil, c, d } => "acd"
sparseConcat{ nil, b, c, d } => "bcd"
]]
function p.sparseConcat(t, sep, i, j)
local list = {}
local list_i = 0
for _, v in p.sparseIpairs(t) do
list_i = list_i + 1
list[list_i] = v
end
return table.concat(list, sep, i, j)
end
--[[
-- This returns the length of a table, or the first integer key n counting from
-- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return
-- a different value when there are gaps in the array portion of the table.
-- Intended to be used on data loaded with mw.loadData. For other tables, use #.
-- Note: #frame.args in frame object always be set to 0, regardless of
-- the number of unnamed template parameters, so use this function for
-- frame.args.
--]]
function p.length(t)
local i = 1
while t[i] ~= nil do
i = i + 1
end
return i - 1
end
function p.inArray(arr, valueToFind)
checkType("inArray", 1, arr, "table")
-- if valueToFind is nil, error?
for _, v in ipairs(arr) do
if v == valueToFind then
return true
end
end
return false
end
return p